

Uniform Circular Motion

- An object that moves in a circle at constant speed v, is said to experience uniform circular motion.
- The magnitude of the linear velocity remains constant, but the direction is constantly changing.

- Since acceleration is defined as the rate of change of velocity, a change in direction means that there is acceleration.

\qquad
\qquad
\qquad
- If we have a very small $\Delta \theta$ then...

$$
\frac{\Delta v}{v} \approx \frac{\Delta L}{r} \quad \begin{aligned}
& \text { Similar triangles } \\
& \text { We assume that the magnitude of } \\
& v_{1}=v_{2}(\text { completely true if } \Delta t=0)
\end{aligned}
$$

Solve for Δv

$$
\Delta v=\frac{v \Delta L}{r}
$$

Divide both sides by Δt

$$
\frac{\Delta v}{\Delta t}=\frac{v \Delta L}{r \Delta t}
$$

\qquad
\qquad
$\frac{\Delta v}{\Delta t}$ is acceleration $\frac{\Delta L}{\Delta t}$ is speed
Therefore...

$$
a=\frac{v^{2}}{r}
$$

Centripetal (radial) Acceleration

(points towards the center)

- Circular motion is often described in terms of period (or frequency)
- Period (T)
- The time of 1 revolution
- Frequency (f)
- Number of revolutions per second
- Period and frequency are related:

$$
T=\frac{1}{f}
$$

One revolution around a circle is $2 \pi r$
So... $v=\frac{2 \pi r}{T}$

Therefore...

$$
a=\frac{4 \pi^{2} r}{T^{2}}
$$

Example

\qquad

- A 150 g ball at the end of a string is revolving in a horizontal circle of radius 0.60 m . The ball makes 2 revolutions in
\qquad one second. What is its centripetal acceleration?

$$
\mathrm{a}=95 \mathrm{~ms}^{-2}
$$

Angular Quantities

-When an object moves in a circular path we can describe its position, velocity, and acceleration in terms of angle.

Angular Position

- To describe the angular position of an object, or how far it has rotated, we specify the angle θ of some particular line in the object with respect to a reference line in the object (x-axis)

- The angle is measured in radians and is given by

$$
\theta=\frac{l}{r}
$$

Angular Displacement

- The angle in radians through which a point has been rotated about a specified axis

Angular Velocity

- Change in angle per unit time

Linear Velocity

- Angular velocity times the radius of the circular path.

Centripetal Force

- According to Newton's second law, an accelerating object must have a net force acting on it.
- For circular motion, this net (or total) force is called the centripetal force.
$F=m a_{c}$ or $F=\frac{m v^{2}}{r}$ or $F=m \omega^{2} r$
Centripetal force always points towards the center of the circular path.

